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CONVERGENCE ANALYSIS OF THE VARIATIONAL OPERATOR

SPLITTING SCHEME FOR A REACTION-DIFFUSION SYSTEM

WITH DETAILED BALANCE
∗

CHUN LIU† , CHENG WANG‡ , YIWEI WANG§ , AND STEVEN M. WISE¶

Abstract. We present a detailed convergence analysis for an operator splitting scheme proposed
in [C. Liu, C. Wang, and Y. Wang, J. Comput. Phys., 436 (2021), 110253] for a reaction-diffusion
system with detailed balance. The numerical scheme has been constructed based on a recently
developed energetic variational formulation, in which the reaction part is reformulated in terms of
the reaction trajectory, and both the reaction and diffusion parts dissipate the same free energy. The
scheme is energy stable and positivity-preserving. In this paper, the detailed convergence analysis
and error estimate are performed for the operator splitting scheme. The nonlinearity in the reaction
trajectory equation, as well as the implicit treatment of nonlinear and singular logarithmic terms,
impose challenges in numerical analysis. To overcome these difficulties, we make use of the convex
nature of the logarithmic nonlinear terms. In addition, a combination of rough error estimate and
refined error estimate leads to a desired bound of the numerical error in the reaction stage, in the
discrete maximum norm. Furthermore, a discrete maximum principle yields the evolution bound of
the numerical error function at the diffusion stage. As a direct consequence, a combination of the
numerical error analysis at different stages and the consistency estimate for the operator splitting
procedure results in the convergence estimate of the numerical scheme for the full reaction-diffusion
system. The convergence analysis technique could be extended to a more general class of dissipative
reaction mechanisms. As an example, we also consider a near-equilibrium reaction kinetics, which
was derived by the linear response assumption on the reaction trajectory. Although the reaction rate
is more complicated in terms of concentration variables, we show that the numerical approach and
the convergence analysis also work in this case.
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scheme, positivity preserving, optimal rate convergence analysis, rough error estimate and refined
error estimate
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1. Introduction. Reaction-diffusion-type equations have wide applications in
modeling many physical and biological systems, such as pattern formation [26, 32, 46],
tumor growth [28, 39, 47], molecular motors [9, 30, 53], and active materials [48, 55].
For simplicity of presentation, we consider a reaction-diffusion system with three
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reactive components:

(1.1)











∂ta = ∇ · (Da(x)∇a) − ab+ c,

∂tb = ∇ · (Db(x)∇b) − ab+ c,

∂tc = ∇ · (Dc(x)∇c) + ab − c,

subject to a periodic boundary condition and a positive initial condition

(a(x, 0), b(x, 0), c(x, 0)) = (a0(x), b0(x), c0(x)) ∈ R3,+.

Here a, b, and c are concentrations of species A, B, and C, and Dα(x) > 0 (α = a, b, c)

are diffusion coefficients. System (1.1) is associated to a chemical reaction A+B
k+

−−⇀↽−−
k−

C, with k+ = k− = 1.
The original reaction-diffusion system (1.1) is not a gradient flow, at least not in

a direct form. As a result, standard numerical methodologies for gradient flows are
not directly applicable to this system. Fortunately, some recent works [35, 37, 54]
have discovered that the reaction and diffusion parts correspond to two different, but
complimentary, gradient flow structures. Although these two gradient flow structures
are very different, they share exactly the same free energy.

Indeed, letting a∞ > 0, b∞ > 0, and c∞ > 0 satisfy

(1.2) k+a∞b∞ = k−c∞,

with k+ = k− = 1 in the present case, we can define the free energy F(a, b, c) as
(1.3)

F(a, b, c) :=

∫

Ω

(

a
(

ln
( a

a∞

)

− 1
)

+ b
(

ln
( b

b∞

)

− 1
)

+ c
(

ln
( c

c∞

)

− 1
)

)

dx.

The corresponding chemical potentials, µA, µB , and µC , for species A, B, and C
associated to the free energy F(a, b, c), can be calculated as

(1.4) µA :=
δF
δa

= ln
a

a∞ , µB :=
δF
δb

= ln
b

b∞ , µC :=
δF
δc

= ln
c

c∞ .

For the reaction-only part

(1.5) ∂ta = −ab+ c, ∂tb = −ab+ c, ∂tc = ab − c,

one can introduce a new variable,

R(x, t) =
∫ t

0
(ab − c) ds,

known as the reaction trajectory [54]. The reaction trajectory R(x, t), which was
originally introduced by De Donder [10] as a state variable for a chemical reaction
system, accounts for the number of forward reaction which has happened by time t.
In turn, one gets a = a0 −R, b = b0 −R, c = c0 +R, and the following equation of R
could be derived [54]:

ln
(

1 +
∂tR

c

)

= ln
(

1 +
ab − c

c

)

= ln
(ab

c

)

= ln a+ ln b − ln c

= ln(a0 − R) + ln(b0 − R) − ln(c0 +R).(1.6)
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The free energy can be written in terms of R, specifically, F(a, b, c) = F̃(R), and it is
easy to see that

(1.7) ln
(

1 +
∂tR

c

)

= ln(a0 − R) + ln(b0 − R) − ln(c0 +R) = −
δF̃
δR

.

Therefore, the following energy dissipation law is available:

d

dt
F̃(R) =

(

∂tR,
δF̃
δR

)

= −
(

c
∂tR

c
, ln
(

1 +
∂tR

c

)

)

≤ 0,

provided that ∂tR
c > −1. In other words, the reaction part becomes a generalized

gradient flow in terms of R, which is decidedly different from the standard L2 or H−1

gradient flow structures. The monotonicity of ln(1 + ∂tR
c ) (in terms of ∂tR) for c > 0

plays an important role in the dissipation mechanism.
In the meantime, it is observed that the diffusion-only part,

(1.8) ∂ta = ∇ · (Da(x)∇a), ∂tb = ∇ · (Db(x)∇b), ∂tc = ∇ · (Dc(x)∇c),

could be rewritten as the following H−1 gradient flow, with nonconstant mobility:

(1.9) ∂ta = ∇ · (Da(x)a∇µA), ∂tb = ∇ · (Db(x)b∇µB), ∂tc = ∇ · (Dc(x)c∇µC).

This gradient flow structure is similar to that of the Poisson–Nernst–Planck (PNP)
system [38, 49].

As a consequence, the overall system satisfies the energy-dissipation law [54]:

(1.10)

d

dt
F(a, b, c) = −

∫

Ω
Da(x)a|∇µA|2 +Db(x)b|∇µB |2 +Dc(x)c|∇µC |2

+ ∂tR ln
(

1 +
∂tR

c

)

dx ≤ 0.

Remark 1.1. There have been many existing works aiming to establish a varia-
tional structure of reaction-diffusion systems [2, 14, 15, 25, 27, 41, 42, 35, 50, 56, 54].
Condition (1.2) is known as the detailed balance condition, which guarantees the ex-
istence of the free energy [2, 15]. We call (1.10) the energetic variational formulation
for the reaction-diffusion system, which can be used to model the coupling between
a general reversible reaction network and another mechanical process, such as gen-
eral diffusions. We refer interested readers to [37, 54] for the energetic variational
formulation for more general cases.

Although the reaction and diffusion parts in (1.1) correspond to very different gra-
dient flow structures, their free energy functionals are exactly the same. If one applies
a standard numerical discretization to the original reaction-diffusion system (1.1), the
variational structure may be lost. In turn, either the theoretical property or the loga-
rithmic energy stability could not be justified. This fact motivates the development of
the operator splitting scheme [37], in which the reaction stage is solved in terms of the
reaction trajectory R and both stages dissipate the same discrete energy. The unique
solvability, positivity-preserving property and energy stability have been theoretically
established for the proposed operator splitting scheme. However, its convergence
analysis and error estimate remain open, in which the primary difficulty comes from
the nonlinear and singular nature of the logarithmic terms. The implicit treatment of



784 C. LIU, C. WANG, Y. WANG, AND S. M. WISE

these nonlinear and singular logarithmic terms are crucial to enforcing the positivity
of the numerical solution, as well as the energy stability analysis, while it has posed a
great challenge in the theoretical justification of the convergence analysis. Also see the
related works [8, 16, 17, 18, 57] for the Cahn–Hilliard equation with Flory–Huggins
energy potential, as well as [38, 49] for the PNP system, [19] for the porous medium
equation, [60] for a liquid film droplet model, etc.

In this paper we provide a detailed convergence analysis and error estimate for
the operator splitting scheme, proposed in [37] and applied to the reaction-diffusion
system (1.1). A careful consistency estimate for the splitting process, as well as the
temporal discretization at each stage, gives an O(∆t) truncation error. In addition,
the centered difference spatial discretization at the diffusion stage implies an O(h2)
truncation error. To overcome the subtle difficulty associated with the singularity, we
make use of the convex nature of the logarithmic nonlinear terms, which are implicitly
treated in the reaction stage. In addition, a combination of rough error estimate and
refined error estimate is performed in the reaction stage, which in turn leads to a de-
sired bound of the numerical error in the discrete maximum norm. Moreover, a careful
application of discrete maximum principle yields the evolution bound of the numer-
ical error function at the diffusion stage. Therefore, a combination of the numerical
error analysis at different stages results in the convergence estimate of the numerical
scheme for the full reaction-diffusion system in the discrete maximum norm.

In addition, this convergence analysis technique could be extended to a more gen-
eral class of reaction dissipation mechanism. The reaction rates in (1.1) stand for a
special example of the law of mass action, i.e., the reaction rate is directly propor-
tional to the product of the concentrations of the reactants. This law usually gives
a simple form of the reaction rate in terms of concentration variables, while the dis-
sipation in terms of R and Rt becomes more complicated. Alternatively, the linear
response theory has been proposed and applied, which in turn leads to a more com-
plicated reaction rate formula (in the singular logarithmic form) and simpler reaction
dissipation (the standard L2 gradient flow); see the more detailed derivations in [54].
The numerical schemes proposed in [37] focused on the reaction rate given by the
law of mass action, while the reaction-diffusion system with the reaction dissipation
given by the linear response theory was not covered in this reference. Meanwhile,
the idea of operator splitting, the rough/refined error estimates in the reaction stage,
as well as the maximum norm error estimate for the overall numerical scheme could
be very effectively extended. In general, as long as the free energy is a singular and
convex energy potential in terms of the reaction trajectory R, and the left-hand side
of its evolutionary equation could be represented as a monotone function of Rt, these
numerical analysis techniques will be applicable.

The rest of this paper is organized as follows. The positive-preserving and energy
stable operator splitting scheme for the reaction-diffusion system (1.1) is reviewed in
section 2. The optimal rate convergence analysis and error estimate are presented in
section 3. The corresponding analysis for more generalized reaction dissipation mech-
anism, such as the one given by the linear response theory, is provided in section 4. A
numerical result is given in section 5, which validates the theoretical analysis. Finally,
some concluding remarks are made in section 6.

2. Review of the operator splitting numerical scheme. In this section,
we give a brief review to the operator splitting method proposed in [37], which
is based on the energetic variational formation (1.10) of (1.1). Letting u(x, t) =
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(a(x, t), b(x, t), c(x, t))T, the reaction-diffusion system (1.1) can be represented as

(2.1) ∂tu(x, t) = Au + Bu,

where A and B are the reaction operator and the diffusion operator, respectively. As
mentioned earlier, the key point of designing an energy-stable, positivity-preserving
numerical scheme for the reaction part is to discretize the reaction trajectory equation
(1.7) directly. We present the numerical algorithm on the computational domain
Ω = (0, 1)3 with periodic boundary conditions and use a finite difference method as a
spatial discretization. The spatial mesh size is set as ∆x = ∆y = ∆z = h = 1

N , where
N is the spatial mesh resolution throughout this paper. In particular, fi,j,k stands for
the numerical value of f at the cell centered mesh points ((i+ 1

2 )h, (j+
1
2 )h, (k+

1
2 )h),

so that the discrete summation could be easily defined over Ω. The discrete gradient,
divergence, and Laplacian operators, given by ∇h, ∇h·, and ∆h, are defined based
on the standard centered difference approximation. The discrete L2 inner product
between two grid functions f and g, as well as the discrete L2 norm, are defined as

(2.2) 〈f, g〉 := h3
N
∑

i,j,k=1

fi,j,kgi,j,k, ‖f‖2 := (〈f, f〉)
1
2 .

As an application, the discrete energy of a numerical solution (a, b, c) is introduced as

(2.3) Fh(a, b, c) :=
〈

a
(

ln
( a

a∞

)

− 1
)

+ b
(

ln
( b

b∞

)

− 1
)

+ c
(

ln
( c

c∞

)

− 1
)

,1
〉

.

In addition to the discrete ‖ · ‖2 norm, the discrete maximum norm is defined as
follows:

(2.4) ‖f‖∞ := max
1≤i,j,k≤N

|fi,j,k| .

Based on the energy-dissipation law (1.10), the operator splitting scheme for (1.1)
can be formulated as follows: Given an, bn, cn, with an, bn, cn > 0 at each mesh point,
we update an+1, bn+1, cn+1 via the following two stages.

Stage 1. First, we set Rn ≡ 0 and solve
(2.5)

ln

(

Rn+1 − Rn

cn∆t
+ 1

)

= ln

(

an − Rn+1

a∞

)

+ ln

(

bn − Rn+1

b∞

)

− ln

(

cn +Rn+1

c∞

)

at each mesh point. By a careful analysis based on the convexity of the logarithmic
function, one can show that there exists a unique solution Rn+1 such that an−Rn+1 >
0, bn − Rn+1 > 0, cn +Rn+1 > 0, and Rn+1 − Rn + cn∆t > 0. In turn, we denote

(2.6) an+1,∗ := an − Rn+1, bn+1,∗ := bn − Rn+1, cn+1,∗ := cn +Rn+1.

Furthermore, the following energy dissipation property has been established [37]:

(2.7) Fh(a
n+1,∗, bn+1,∗, cn+1,∗) ≤ Fh(a

n, bn, cn).

Stage 2. The intermediate variables an+1,∗, bn+1,∗, cn+1,∗ have been proved to
be positive at each mesh point. Next, we update an+1, bn+1, and cn+1 by the standard
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implicit Euler scheme

(2.8)































an+1 − an+1,∗

∆t
= ∇h · (Da∇ha

n+1),

bn+1 − bn+1,∗

∆t
= ∇h · (Db∇hb

n+1),

cn+1 − cn+1,∗

∆t
= ∇h · (Dc∇hc

n+1),

where ∇h and ∇h· are discrete gradient and divergence operators. The positivity and
energy stability of the implicit Eulerian scheme has been proved in [37], i.e.,

an+1, bn+1, cn+1 > 0 (pointwise),(2.9)

Fh(a
n+1, bn+1, cn+1) ≤ Fh(a

n+1,∗, bn+1,∗, cn+1,∗).(2.10)

A combination of (2.7) and (2.10) results in

Fh(a
n+1, bn+1, cn+1) ≤ Fh(a

n, bn, cn).(2.11)

Therefore, we arrive at the following theoretical result for the operator splitting
scheme.

Theorem 2.1 ([37]). Given an, bn, cn, with ani,j,k, b
n
i,j,k, c

n
i,j,k > 0 ∀ 1 ≤ i, j, k ≤

N , there exists a unique solution an+1, bn+1, cn+1, with discrete periodic or Neumann
boundary conditions, for the operator splitting numerical scheme ( (2.5) combined with
(2.8)). The pointwise positivity is ensured: 0 < an+1

i,j,k, b
n+1
i,j,k, c

n+1
i,j,k ∀ 1 ≤ i, j, k ≤

N . In addition, we have the energy dissipation estimate: Fh(a
n+1, bn+1, cn+1) ≤

Fh(a
n, bn, cn), so that Fh(a

n, bn, cn) ≤ Fh(a
0, b0, c0).

3. Optimal rate convergence analysis and error estimate. Numerical re-
sults in [37] indicate that the operator splitting scheme can achieve first-order accuracy
in time and second-order accuracy in space. However, a theoretical justification of
the convergence analysis turns out to be a challenging subject, due to the nonlinear
and singular nature of the reaction part. The main theoretical result of this paper is
the following convergence theorem.

Theorem 3.1. Given positive initial data a0, b0, c0 ∈ C4
per(Ω), suppose the exact

solution for the reaction-diffusion system (1.1), denoted (ae, be, ce), is of regularity
class [R]3, where

(3.1) R := C2 (0, T ;Cper(Ω)) ∩ C1 (0, T ;C1
per(Ω)

)

∩ L∞ (0, T ;C4
per(Ω)

)

.

Then, provided ∆t and h are sufficiently small, we have

(3.2) ‖ane − an‖∞ + ‖bne − bn‖∞ + ‖cne − cn‖∞ ≤ C(∆t+ h2)

for all positive integers n, such that tn = n∆t ≤ T , where C > 0 is independent of
∆t and h, ane , bne , and cne are exact solutions at tn.

As a consequence of the regularity assumption (3.1), the following bound is avail-
able for the exact solution:

(3.3) ‖ue‖C2(0,T ;C0) ≤ C0, ‖ue(·, t)‖C4(Ω) ≤ C0 ∀t ≥ 0.
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In particular, there exists a constant C0 such that
(3.4)
sup
x,t

max{|ae(x, t)| + |∂tae(x, t)|, |be(x, t)| + |∂tbe(x, t)|, |ce(x, t)| + |∂tce(x, t)|} ≤ C0.

In addition, the following separation property is also assumed for the exact solu-
tions:

(3.5) ae(x, t), be(x, t), ce(x, t) ≥ ǫ0 ∃ ǫ0 > 0.

In fact, this assumption is necessary to ensure the regularity requirement (3.1) for the
exact solutions, because of the ln a

a∞ , ln b
b∞ , ln c

c∞ terms appearing in the free energy.
In fact, such a separation property has already been established for the 2-D Cahn–
Hilliard equation with Flory–Huggins energy potential [1, 11, 22, 24, 43], and this
property is expected to hold for the reaction-diffusion system (1.1) in the energetic
variational formulation.

3.1. Consistency analysis for the operator splitting scheme. We first
perform a consistency analysis [3] for the operator splitting scheme. Given un

e =
(ane , b

n
e , c

n
e )

T , with the regularity assumption (3.1) and separation assumption (3.5)
satisfied, we introduce un+1,∗

e = (an+1,∗
e , bn+1,∗

e , cn+1,∗
e )T as the exact update of the

first stage equation: ∂tu = Au, over the time interval (tn, tn+1), with initial data un
e .

In other words, un+1,∗
e = (an+1,∗

e , bn+1,∗
e , cn+1,∗

e )T is the exact solution at t = tn+1 for
the reaction-only equation

(3.6)

{

∂tu = Au,
u(x, tn) = un

e (x).

Meanwhile, as mentioned in the previous section, (3.6) can be reformulated as an
equation of the reaction trajectory Re(x, t) over the time interval (tn, tn+1), since

ae(x, t) = ane (x) − Re(x, t), be(x, t) = bne (x) − Re(x, t), ce(x, t) = cne (x) +Re(x, t).

The equation for Re is given by

(3.7)

{

ln
(

∂tRe
cn

e +Re
+ 1
)

= ln
(

an
e −Re
a∞

)

+ ln
(

bn
e −Re
b∞

)

− ln
(

cn
e +Re
c∞

)

,

Re(·, tn) ≡ 0.

Moreover, we have

an+1,∗
e = ane − Rn+1

e , bn+1,∗
e = bne − Rn+1

e , cn+1,∗
e = cne +Rn+1

e .(3.8)

By a careful Taylor expansion in time, one can show that the exact equation (3.7)
can be approximated by the temporal discretization (2.5) with O(∆t) accuracy:

(3.9)

ln
( Rn+1

e − Rn
e

(cne +Rn
e )∆t

+ 1
)

= ln
(ane − Rn+1

e

a∞

)

+ ln
(bne − Rn+1

e

b∞

)

− ln
(cne +Rn+1

e

c∞

)

+ τn+1
0 ,

where Rn
e ≡ 0 and |τn+1

0 | ≤ C∆t is the local truncation error at a pointwise level.
The consistency estimate (3.9) could be rewritten as the following equation after an
exponential transform:

Rn+1
e − Rn

e

(cne +Rn
e )∆t

=
(ane − Rn+1

e )(bne − Rn+1
e )

cne +Rn+1
e

− 1 + τn+1
1 ,(3.10)
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where |τn+1
1 | ≤ C∆t due to the fact that eτ

n+1
0 − 1 = O(∆t) for τn+1

0 = O(∆t).
In the second stage, given un+1,∗

e = (an+1,∗
e , bn+1,∗

e , cn+1,∗
e )T , we denote the exact

update by un+1,∗∗
e = (an+1,∗∗

e , bn+1,∗∗
e , cn+1,∗∗

e )T , i.e., un+1,∗∗
e is the exact solution for

the linear diffusion equation

(3.11)
∂tu = Bu = ∇ · (D(x)∇u),

u(·, tn) = un+1,∗
e

at t = tn+1. By a careful Taylor expansion associated with the operator splitting
un+1,∗∗
e = eB∆teA∆tun

e , one can show that

(3.12) un+1,∗∗
e − un+1

e = O(∆t2).

On the other hand, an application of implicit Euler temporal discretization to the
diffusion equation system (3.11) implies the consistency estimate

(3.13)
un+1,∗∗
e − un+1,∗

e

∆t
= ∇ · (D(x)∇un+1,∗∗

e ) + τ
n+1,(1)
2,t ,

where |τn+1,(1)
2,t | ≤ C∆t is the local truncation error. In turn, its combination with

(3.12) yields

(3.14)
un+1
e − un+1,∗

e

∆t
= ∇ · (D(x)∇un+1

e ) + τn+1
2,t ,

where |τn+1
2,t | ≤ C∆t. Furthermore, the centered difference approximation for un+1

e

leads to the following truncation error estimate:

(3.15) |∇ · (D(x)∇un+1
e ) − ∇h · (D∇hun+1

e )| ≤ Ch2, pointwise on the mesh.

Then we obtain the consistency estimate for the second stage:

(3.16)
un+1
e − un+1,∗

e

∆t
= ∇h · (D∇hun+1

e ) + τn+1
2 ,

where |τn+1
2 | ≤ C(∆t+ h2).

In summary, we have the consistency analysis for the operator splitting scheme,

Rn+1
e − Rn

e

(cne +Rn
e )∆t

=
(ane − Rn+1

e )(bne − Rn+1
e )

cne +Rn+1
e

− 1 + τn+1
1 , Rn

e = 0,(3.17)

an+1,∗
e = ane − Rn+1

e , bn+1,∗
e = bne − Rn+1

e , cn+1,∗
e = cne +Rn+1

e ,(3.18)

un+1
e − un+1,∗

e

∆t
= ∇h · (D∇hun+1

e ) + τn+1
2 ,(3.19)

where

(3.20) |τn+1
1 | ≤ C∆t and |τn+1

2 | ≤ C(∆t+ h2).

Of course, the local truncation error is of order O(∆t+ h2).
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3.2. Error estimate in the first stage. We first perform the error estimate
in the reaction stage. Define the pointwise error functions:
(3.21)

eka := ake − ak, ekb := bke − bk, ekc := cke − ck, ekR := Rk
e − Rk,

en+1,∗
a := an+1,∗

e − an+1,∗, en+1,∗
b := bn+1,∗

e − bn+1,∗, en+1,∗
c := cn+1,∗

e − cn+1,∗

for any k ≥ 0, n ≥ 0. The numerical scheme for the reaction stage (2.5) may, of
course, be rewritten by an exponential transform,

(3.22)
Rn+1 − Rn

(cn +Rn)∆t
=

(an − Rn+1)(bn − Rn+1)

cn +Rn+1 − 1, Rn ≡ 0.

Subtracting the rewritten scheme (3.22) from the consistency estimate (3.17) and
rearranging terms yields

(3.23)
en+1
R

cn∆t
= qn+1

0 enc −(qn+1
1 +qn+1

2 +qn+1
3 )en+1

R +qn+1
1 ena+qn+1

2 enb −qn+1
3 enc +τn+1

1 ,

where

qn+1
0 :=

Rn+1
e

cne · cn∆t
, qn+1

1 :=
bn − Rn+1

cn +Rn+1 ,

qn+1
2 :=

ane − Rn+1
e

cn +Rn+1 , qn+1
3 :=

(ane − Rn+1
e )(bne − Rn+1

e )

(cn +Rn+1)(cne +Rn+1
e )

.

(3.24)

Remark 3.1. We observe that

(3.25)

AB

C
−

(A+ ξA)(B + ξB)

C + ξB
=

ABξC
(C + ξC)C

−
ξAξB
C + ξC

−
AξB +BξA
C + ξC

= −
B + ξB
C + ξC

ξA −
A

C + ξC
ξB +

AB

C(C + ξC)
ξC .

By taking A = ane − Rn+1
e , B = bne − Rn+1

e , C = cne + Rn+1
e , ξA = −ena + en+1

R ,
ξB = −enb + en+1

R , and ξC = −enc − en+1
R , we can obtain (3.23).

The error evolutionary equation (3.23) could be rewritten as

(3.26) Mn+1en+1
R = qn+1

0 enc + (qn+1
1 ena + qn+1

2 enb − qn+1
3 enc ) + τn+1

1 ,

where Mn+1 is defined by

(3.27) Mn+1 :=
1

cn∆t
+ (qn+1

1 + qn+1
2 + qn+1

3 ).

To proceed with the nonlinear analysis, we first make the following a priori assumption
for the previous time step:

(3.28) ‖ena‖∞ ≤ ∆t
1
2 + h, ‖enb ‖∞ ≤ ∆t

1
2 + h, ‖enc ‖∞ ≤ ∆t

1
2 + h.

Such an a priori assumption will be recovered by the optimal rate convergence analysis
at the next time step, as demonstrated later.

A direct consequence of the assumption (3.28) gives the following bound and
separation property for the numerical solution at the previous time step:

(3.29)
|an| ≤ |ane | + |ena | ≤ C0 + 1 := C1, |bn| ≤ C1, |cn| ≤ C1,

an ≥ ane − |ena | ≥
ǫ0

2
, bn ≥

ǫ0

2
, cn ≥

ǫ0

2
,
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provided that

∆t
1
2 , h ≤ min

(

ǫ0

4
,
1

2

)

.

Here we have made use of the functional bound (3.3) and the separation property (3.5)
for the exact solution.

Due the positivity-preserving property for both the exact solution and the nu-
merical solution (coming from Theorem 2.1), it is obvious that

(3.30)
ane − Rn+1

e > 0, bne − Rn+1
e > 0, cne +Rn+1

e > 0,

an − Rn+1 > 0, bn − Rn+1 > 0, cn +Rn+1 > 0,

which, in turn, implies that

(3.31) qn+1
1 > 0, qn+1

2 > 0, qn+1
3 > 0.

Meanwhile, the C2([0, T ]) bound for the exact solution Re indicates that |R
n+1
e
∆t | ≤ C0.

The separation estimates for the exact and numerical solutions, given by (3.5) and
(3.29), respectively, lead to 0 < 1

cn·cn
e
< 4

ǫ2
0
. In turn, qn+1

0 is uniformly bounded by

(3.32) |qn+1
0 | ≤

4C0

ǫ2
0

:= C2.

A rough error estimate on ‖en+1
R ‖∞ . ∆t1/2 + h can be obtained based on the

following simple estimates:

Mn+1 ≥
1

(cn +Rn)∆t
=⇒ 0 <

1

Mn+1 ≤ cn∆t ≤ C1∆t,(3.33)

Mn+1 ≥ qn+1
1 + qn+1

2 + qn+1
3 =⇒ 0 <

qn+1
1 + qn+1

2 + qn+1
3

Mn+1 ≤ 1,(3.34)

∣

∣

∣

qn+1
0

Mn+1

∣

∣

∣
≤
∣

∣

∣

C2
1

cn∆t

∣

∣

∣
≤ C2c

n∆t ≤ C2C1∆t.(3.35)

Moreover, since qn+1
1 > 0, qn+1

2 > 0, qn+1
3 > 0, it is straightforward to see that

∣

∣

∣

qn+1
1 ena + qn+1

2 enb − qn+1
3 enc

Mn+1

∣

∣

∣
≤

qn+1
1 + qn+1

2 + qn+1
3

Mn+1 max(|ena |, |enb |, |enc |)

≤ max(|ena |, |enb |, |enc |).(3.36)

A substitution of (3.33), (3.35), and (3.36) into (3.26) leads to

|en+1
R | ≤

|qn+1
0 |

Mn+1 |enc | +
∣

∣

∣

qn+1
1 ena + qn+1

2 enb − qn+1
3 enc

Mn+1

∣

∣

∣
+

1

Mn+1 |τn+1
1 |

≤ C1C2∆t|enc | +max(|ena |, |enb |, |enc |) + C1∆t|τn+1
1 |.(3.37)

With the a priori numerical error assumption at the previous time step (3.28), we
arrive at a rough error estimate for en+1

R :

|en+1
R | ≤ 2(∆t

1
2 + h) + C1∆t|τn+1

1 | ≤ 2(∆t
1
2 + h) + CC1∆t2 ≤ 3∆t

1
2 + 2h,(3.38)

provided that C1C2∆t ≤ 1 and CC1(∆t)3/2 < 1. Here the local truncation error
estimate |τn+1

1 | ≤ C∆t has been used.
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The rough error estimate on en+1
R enables us to refine the estimates on qn+1

i ,
which is the key to obtaining the error estimate of the desired order. As a result of
this rough estimate, the following estimates can be derived:

cne +Rn+1
e ≥ ǫ0 − C0∆t ≥

ǫ0

2
(since |Rn+1

e | ≤ C0∆t),(3.39)

|enc | + |en+1
R | ≤ 4∆t

1
2 + 3h ≤ min

(ǫ0

4
, 1
)

(using (3.28), (3.38)),(3.40)

cn +Rn+1 ≥ cne +Rn+1
e − (|enc | + |en+1

R |) ≥
ǫ0

4
,(3.41)

cn +Rn+1 ≤ cne +Rn+1
e + (|enc | + |en+1

R |) ≤ C1 + 1,(3.42)

provided that C0∆t ≤ ǫ0
2 and 4∆t

1
2 + 3h ≤ min( ǫ0

4 , 1). The same estimate can be
made for a and b. Then we obtain

0 < qn+1
1 =

bn − Rn+1

cn +Rn+1 ≤
C1 + 1

ǫ0
4

= 4(C1 + 1)ǫ−1
0 ,(3.43)

0 < qn+1
2 =

ane − Rn+1
e

cn +Rn+1 ≤
C1
ǫ0
4

= 4C1ǫ
−1
0 ,(3.44)

0 < qn+1
3 =

(ane − Rn+1
e )(bne − Rn+1

e )

(cn +Rn+1)(cne +Rn+1
e )

≤
C2

1
ǫ2

0
8

= 8C2
1 ǫ

−2
0 ,(3.45)

so that the following uniform bound is available:

(3.46) 0 < qn+1
1 + qn+1

2 + qn+1
3 ≤ C3 := (8C1 + 4)ǫ−1

0 + 8C2
1 ǫ

−2
0 .

Consequently, we have the refined estimate
∣

∣

∣

∣

qn+1
1 ena + qn+1

2 enb − qn+1
3 enc

Mn+1

∣

∣

∣

∣

≤
1

Mn+1 (q
n+1
1 + qn+1

2 + qn+1
3 )max(|ena |, |enb |, |enc |)

≤ C1C3∆tmax(|ena |, |enb |, |enc |).(3.47)

Going back to the earlier error estimate (3.37), we arrive at

|en+1
R | ≤

|qn+1
0 |

Mn+1 |enc | +
∣

∣

∣

∣

qn+1
1 ena + qn+1

2 enb − qn+1
3 enc

Mn+1

∣

∣

∣

∣

+
1

Mn+1 |τn+1
1 |

≤ C1C2∆t|enc | + C1C3∆tmax(|ena |, |enb |, |enc |) + C1∆t|τn+1
1 |

≤ 2C1(C2 + C3)∆tmax(|ena |, |enb |, |enc |) + C1∆t|τn+1
1 |.(3.48)

On the other hand, a difference between the numerical solution (2.6) and the con-
structed profile (3.18) reveals that

(3.49) en+1,∗
a = ena − en+1

R , en+1,∗
b = enb − en+1

R , en+1,∗
c = enc + en+1

R .

Then we arrive at the following error estimate in the first stage:

|en+1,∗
a | ≤ |ena | + |en+1

R | ≤ (1 + C4∆t)max(|ena |, |enb |, |enc |) + C1∆t|τn+1
1 |,(3.50)

|en+1,∗
b | ≤ |enb | + |en+1

R | ≤ (1 + C4∆t)max(|ena |, |enb |, |enc |) + C1∆t|τn+1
1 |,(3.51)

|en+1,∗
c | ≤ |enc | + |en+1

R | ≤ (1 + C4∆t)max(|ena |, |enb |, |enc |) + C1∆t|τn+1
1 |,(3.52)

with C4 := (1 +M0)C1(C2 + C3). Since the error estimate (3.50)–(3.52) is valid at a
pointwise level, the following conclusion is made:

(3.53)
‖en+1,∗

a ‖∞, ‖en+1,∗
b ‖∞, ‖en+1,∗

c ‖∞

≤(1 + C4∆t)max(‖ena‖∞, ‖enb ‖∞, ‖enc ‖∞) + C1∆t‖τn+1
1 ‖∞.



792 C. LIU, C. WANG, Y. WANG, AND S. M. WISE

Remark 3.2. In the rough error estimate (3.38), we see that the accuracy order
is lower than the desired accuracy order. Therefore, such a rough estimate could not
be used for a global induction analysis. Instead, the purpose of such an estimate is
to establish a uniform ‖ · ‖∞ bound, so that a discrete separation property becomes
available for the numerical solution, as well as its maximum values. With such a
property established for the numerical solution, the refined error analysis yields a
much sharper estimate than in (3.48). A combination of a rough error estimate and
a refined error estimate has been successfully applied to certain nonlinear PDEs with
singular terms, such as the PNP system [38], the porous medium equation in the
energetic variational formulation [19]. Here we show that such a technique works for
the highly nonlinear reaction trajectory equation (1.7).

3.3. Error estimate in the second stage. Now we proceed into the error
estimate for the second part. Subtracting the implicit Euler scheme (2.8) from the
consistency estimate (3.19) yields

en+1
a − en+1,∗

a

∆t
= ∇h · (Da∇he

n+1
a ) + τn+1

2,a ,(3.54)

en+1
b − en+1,∗

b

∆t
= ∇h · (Db∇he

n+1
b ) + τn+1

2,b ,(3.55)

en+1
c − en+1,∗

c

∆t
= ∇h · (Dc∇he

n+1
c ) + τn+1

2,c ,(3.56)

where the local truncation errors τn+1
2,a , τn+1

2,b , and τn+1
2,c satisfy |τn+1

2,a |, |τn+1
2,b |, |τn+1

2,c | ≤
C(∆t+ h2) at a pointwise level.

Due to the maximum principle for the discrete elliptic operator in the finite dif-
ference setting [29], we have

‖en+1
a ‖∞ ≤ ‖en+1,∗

a ‖∞ +∆t‖τn+1
2,a ‖∞,(3.57)

‖en+1
b ‖∞ ≤ ‖en+1,∗

b ‖∞ +∆t‖τn+1
2,b ‖∞,(3.58)

‖en+1
c ‖∞ ≤ ‖en+1,∗

c ‖∞ +∆t‖τn+1
2,c ‖∞.(3.59)

Indeed, for (3.54) with periodic boundary condition, if en+1
a takes a maximum value

at (i, j, k), we see that

(3.60) ∇h · (Da∇he
n+1
a )i,j,k ≤ 0

by looking at the values of en+1
a in a neighborhood of (i, j, k), provided that Da(x) is

pointwise nonnegative. Therefore, the inequality

(3.61) (en+1
a )i,j,k ≤ (en+1,∗

a )i,j,k +∆t(τn+1
2,a )i,j,k

is valid, which in turn implies that

(3.62) max
i,j,k

en+1
a ≤ max

i,j,k
en+1,∗
a +∆tmax

i,j,k
τn+1

2,a .

Similarly, we can prove that

(3.63) min
i,j,k

en+1
a ≥ min

i,j,k
en+1,∗
a − ∆tmax

i,j,k
|τn+1

2,a |.

Combining (3.62) and (3.63), we obtain (3.57). Inequalities (3.58) and (3.59) can be
proved in the same manner.
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3.4. Convergence estimate for the full operator splitting system. A com-
bination of (3.53) and (3.57)–(3.59) reveals that

max(‖en+1
a ‖∞, ‖en+1

b ‖∞, ‖en+1
c ‖∞) ≤ (1 + C4∆t)max(‖ena‖∞, ‖enb ‖∞, ‖enc ‖∞)

+ (1 + C1)∆t(‖τn+1
1 ‖∞ + ‖τn+1

2 ‖∞).(3.64)

Therefore, an application of a discrete Gronwall inequality leads to the desired con-
vergence estimate

(3.65) max(‖en+1
a ‖∞, ‖en+1

b ‖∞, ‖en+1
c ‖∞) ≤ C(∆t+ h2),

based on the truncation error estimates ‖τn+1
1 ‖∞ ≤ C∆t, ‖τn+1

2 ‖∞ ≤ C(∆t+ h2).
With the ‖ · ‖∞ error estimate (3.65) at hand, the a priori assumption in (3.28)

is satisfied at the next time step tn+1:

(3.66) ‖en+1‖∞ ≤ C(∆t+ h2) ≤ ∆t
1
2 + h,

provided ∆t and h are sufficiently small. As a result, an induction analysis could be
applied. This finishes the proof of Theorem 3.1.

Remark 3.3. There have been many existing works of operator splitting numerical
approximation to nonlinear PDEs, such as [12, 13, 62] for reaction-diffusion systems,
[5, 7, 40, 51, 52] for the nonlinear Schrödinger equation, [4] for the incompressible
magnetohydrodynamics system, [6] for the delay equation, [20] for the nonlinear evo-
lution equation, [21] for the Vlasov-type equation, [31] for a generalized Leland mode,
[58, 59] for the “good” Boussinesq equation, [33] for the Allen–Cahn equation, [34]
for the molecular beamer epitaxy (MBE) equation, [61] for nonlinear solvation prob-
lem, etc. A few convergence estimates have also been reported for gradient flow with
polynomial energy potential, such as [34, 59]. The convergence result stated in this
article provides a theoretical convergence analysis for an operator splitting scheme for
an energy variational formulation with singular energy potential involved.

4. A near-equilibrium dynamics: The linear response regime. In classi-
cal chemical kinetics, it is often assumed that the reaction rate is directly proportional
to the product of the concentrations of the reactants, known as the law of mass ac-
tion. The reaction rate given by system (1.1), namely, ±(ab − c), stands for a special
example. The law of mass action gives a simple form of the reaction rate in terms
of concentration variables; however, the dissipation in terms of R and Rt becomes
complicated; see (1.7), in which ln

(

1 + Rt
c

)

is involved.
For chemical reactions, a few recent works employ the linear response assumption

on R to derive a reaction kinetics near the equilibrium [36, 54]. For system (1.5),
it is clear that Rt ≈ 0 near the equilibrium of the chemical reaction. In turn, an
application of the Taylor expansion implies that

(4.1) ln

(

1 +
Rt

c

)

≈
1

c
Rt.

Hence, one can take the dissipation for the reaction part as 1
c |Rt|2 near the chemical

equilibrium, which corresponds to the linear response assumption in nonequilibrium
thermodynamics [44, 45, 23]. In this case, the reaction-only part takes the form

(4.2) ∂ta = −c ln
(ab

c

)

, ∂tb = −c ln
(ab

c

)

, ∂tc = c ln
(ab

c

)

,
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and the reaction trajectory R satisfies the equation

1

c
Rt = ln

(ab

c

)

= ln(a0 − R) + ln(b0 − R) − ln(c0 +R) = −
δF̃
δR

,(4.3)

in which F̃(R) takes the same form as F(a, b, c) = F̃(R). Notice that if ab − c ≪ c,

(4.4) Rt = c ln
(ab

c

)

= c ln
(ab − c

c
+ 1
)

≈ c
ab − c

c
= ab − c,

which is consistent with the law of mass action. A similar argument was proposed in
Onsager’s seminal work [44], in which he showed that the law of mass action for the
reaction network A −−⇀↽−− B −−⇀↽−− C −−⇀↽−− A satisfies the reciprocal relation near the
equilibrium.

In this section, we consider the reaction-diffusion system with the reaction dissi-
pation given by the linear response theory:

(4.5)



















∂ta = ∇ · (Da(x)∇a) − c ln
(

ab
c

)

,

∂tb = ∇ · (Db(x)∇b) − c ln
(

ab
c

)

,

∂tc = ∇ · (Dc(x)∇c) + c ln
(

ab
c

)

,

subject to a periodic boundary condition and a positive initial data. Here the diffusion
part (1.8) has the same dissipation law (1.9) and the energy-dissipation law for the
overall system could be formulated as

(4.6)

d

dt
F(a, b, c) = −

∫

Ω
Da(x)a|∇µA|2 +Db(x)b|∇µB |2 +Dc(x)c|∇µC |2

+
1

c
|Rt|2dx ≤ 0.

The numerical discretization of the reaction part in (1.1) is more challenging than
that in (1.8) if one discretizes the concentration variables directly. Meanwhile, it is
noticed in (4.3) that the reaction part is an L2-gradient flow in R. Although the
reaction rates in system (4.5) do not obey the law of mass action and the numerical
schemes reported in [37] have not covered this system, a similar idea of operator
splitting could be efficiently applied to (4.5). In more details, given an, bn, cn, with
an, bn, cn > 0 at each mesh point, the numerical solutions an+1, bn+1 and cn+1 are
updated via the following two stages. For simplicity of presentation, we take a∞ =
b∞ = c∞ = 1 throughout this section.

Stage 1. First, we set Rn ≡ 0 and solve

(4.7)
1

cn
Rn+1 − Rn

∆t
= ln(an − Rn+1) + ln(bn − Rn+1) − ln(cn +Rn+1)

at each mesh point. Using similar techniques reported in [37], in particular the convex-
ity analysis of the logarithmic energy potential, we are able to prove that there exists
a unique solution Rn+1 such that an −Rn+1 > 0, bn −Rn+1 > 0, and cn +Rn+1 > 0.
Also, the intermediate numerical variables, (an+1,∗, bn+1,∗, cn+1,∗), are denoted as
in (2.6), and the energy dissipation property (2.7) can be similarly established.
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Stage 2. With the pointwise positive intermediate variables an+1,∗, bn+1,∗, cn+1,∗

we update an+1, bn+1, and cn+1 by the standard implicit Euler scheme (2.8). Again,
the positivity and energy stability of the implicit Eulerian scheme has been proved in
[37], so that (2.9), (2.10), and (2.11) are valid.

In turn, the following theoretical result could be established for the operator
splitting scheme; the technical details are left to interested readers.

Theorem 4.1. Given an, bn, cn, with ani,j,k, b
n
i,j,k, c

n
i,j,k > 0 ∀ 1 ≤ i, j, k ≤ N ,

there exists a unique solution an+1, bn+1, cn+1, with discrete periodic or Neumann
boundary conditions, for the operator splitting numerical scheme ( (4.7) combined with
(2.8)). The pointwise positivity is ensured: 0 < an+1

i,j,k, b
n+1
i,j,k, c

n+1
i,j,k ∀ 1 ≤ i, j, k ≤

N . In addition, we have the energy dissipation estimate: Fh(a
n+1, bn+1, cn+1) ≤

Fh(a
n, bn, cn), so that Fh(a

n, bn, cn) ≤ Fh(a
0, b0, c0).

In contrast to the operator splitting scheme (2.5) and (2.8), which corresponds to
the law of mass action, the only essential difference is associated with the left-hand

side of (4.7), in which the temporal discretization ln
(

Rn+1−Rn

cn∆t + 1
)

is replaced by a

simpler form, 1
cn

Rn+1−Rn

∆t , because of the linear response approximation. However,
the numerical analysis might be more challenging, as a simpler rewritten form (3.22)
is no longer available, and a more complicated logarithmic reaction rate has to be kept
in the algorithm. Fortunately, the monotonicity analysis for the logarithmic terms is
still applicable, and the following convergence analysis could be established.

Theorem 4.2. Given positive initial data a0, b0, c0 ∈ C4
per(Ω), suppose the exact

solution for the reaction-diffusion system (4.5), denoted by (ae, be, ce), is of regularity
class [R]3 (with R given by (3.1)). Then, provided ∆t and h are sufficiently small,
the following convergence result holds

(4.8) ‖ane −an‖∞+‖bne −bn‖∞+‖cne −cn‖∞ ≤ C(∆t+h2) ∀n > 1, tn = n∆t ≤ T,

in which (an, bn, cn) is the numerical solution given by the operator splitting scheme
(4.7) and (2.8). The constant C > 0 is independent of ∆t and h, ane , bne , and cne are
exact solutions at tn.

4.1. Consistency analysis. The functional bounds (3.3) and (3.4) for the exact
solution, as well the separation property (3.5), are still valid.

Given un
e = (ane , b

n
e , c

n
e )

T , with the regularity assumption (3.1) and separation
assumption (3.5) satisfied, we similarly introduce un+1,∗

e = (an+1,∗
e , bn+1,∗

e , cn+1,∗
e )T

as the exact solution at t = tn+1 for the reaction-only equation (3.6). Again, (3.6)
can be reformulated as an equation of the reaction coordinate Re(x, t) over the time
interval (tn, tn+1) by the identity (3.7). For the reaction rate determined by the linear
response theory, the equation for Re becomes

(4.9)

{

1
cn ∂tRe = ln(ane − Re) + ln(bne − Re) − ln(cne +Re),

Re(·, tn) ≡ 0.

Subsequently, an intermediate exact profile is introduced as (3.8). In turn, a care-
ful Taylor expansion in time implies the following temporal discretization (2.5) with
O(∆t) accuracy:

(4.10)
1

cn
Rn+1

e − Rn
e

∆t
= ln(ane − Rn+1

e ) + ln(bne − Rn+1
e ) − ln(cne +Rn+1

e ) + τn+1
1 ,
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where Rn
e ≡ 0 and |τn+1

1 | ≤ C∆t is the local truncation error at a pointwise level.
The consistency analysis in the second stage could be derived in the same way as

in (3.11)–(3.16). Then we obtain the consistency analysis for the operator splitting
scheme (4.7) and (2.8):

1

cn
Rn+1

e − Rn
e

∆t
= ln(ane − Rn+1

e ) + ln(bne − Rn+1
e ) − ln(cne +Rn+1

e ) + τn+1
1 ,(4.11)

an+1,∗
e = ane − Rn+1

e , bn+1,∗
e = bne − Rn+1

e , cn+1,∗
e = cne +Rn+1

e ,(4.12)

un+1
e − un+1,∗

e

∆t
= ∇h · (D∇hun+1

e ) + τn+1
2 ,(4.13)

with |τn+1
1 | ≤ C∆t, and |τn+1

2 | ≤ C(∆t+ h2).

4.2. Error estimate in the reaction stage. The pointwise error functions are
defined as (3.21). Of course, a difference between the reaction stage algorithm (4.7)
and the consistency estimate (4.11) and rearranging terms yields

(4.14)
en+1
R

cn∆t
= qn+1

0 enc −(qn+1
a +qn+1

b +qn+1
c )en+1

R +qn+1
a ena+qn+1

b enb −qn+1
c enc +τn+1

1 ,

qn+1
0 =

Rn+1
e

cne · cn∆t
, , qn+1

a =
1

ξn+1
a

, qn+1
a =

1

ξn+1
b

, qn+1
c =

1

ξn+1
c

,(4.15)

ξn+1
a is between an − Rn+1 and ane − Rn+1

e ,

ξn+1
b is between bn − Rn+1 and bne − Rn+1

e ,

ξn+1
c is between cn +Rn+1 and cne +Rn+1

e ,

in which the intermediate value theorem has been applied. Furthermore, this error
evolutionary equation could be rewritten as

Mn+1en+1
R = qn+1

0 enc + (qn+1
a ena + qn+1

b enb − qn+1
c enc ) + τn+1

1 ,(4.16)

Mn+1 :=
1

cn∆t
+ (qn+1

a + qn+1
b + qn+1

c ).(4.17)

Similar to the nonlinear analysis presented in section 3, we make the a priori
assumption (3.28) for the previous time step, which will be recovered by the opti-
mal rate convergence analysis at the next time step. In turn, the maximum norm
bound (3.29), as well as the separation property for the numerical solution at the
previous time step, becomes a direct consequence of the a priori assumption (3.28).
Recalling the positivity-preserving property for both the exact solution and the nu-
merical solution (coming from Theorem 4.1), the pointwise positivity inequality (3.30)
is available. By the representation formula (4.15) for qn+1

a , qn+1
b , and qn+1

c , we see
that

(4.18) qn+1
a > 0, qn+1

c > 0, qn+1
c > 0.

Similarly, the uniform bound (3.32) for |qn+1
0 | is still valid. Therefore, a rough error

estimate on ‖en+1
R ‖∞ . ∆t1/2 + h becomes available. Indeed, it is easy to show that

Mn+1 ≥
1

cn∆t
=⇒ 0 <

1

Mn+1 ≤ cn∆t ≤ C1∆t,(4.19)

Mn+1 ≥ qn+1
a + qn+1

b + qn+1
c =⇒ 0 <

qn+1
a + qn+1

b + qn+1
c

Mn+1 ≤ 1,(4.20)
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where C1 is a bound for the numerical solution. Its combination with the fact that
qn+1

1 > 0, qn+1
2 > 0, qn+1

3 > 0 leads to

∣

∣

∣

∣

qn+1
a ena + qn+1

b enb − qn+1
c enc

Mn+1

∣

∣

∣

∣

≤
qn+1
a + qn+1

b + qn+1
c

Mn+1 max(|ena |, |enb |, |enc |)

≤ max(|ena |, |enb |, |enc |).(4.21)

In turn, a substitution of (4.19) and (4.21) into (4.16) gives

|en+1
R | ≤

|qn+1
0 |

Mn+1 |enc | +
∣

∣

∣

∣

qn+1
a ena + qn+1

b enb − qn+1
c enc

Mn+1

∣

∣

∣

∣

+
1

Mn+1 |τn+1
1 |

≤ C1C2∆t|enc | +max(|ena |, |enb |, |enc |) + C1∆t|τn+1
0 |.(4.22)

Again, with the a priori numerical error assumption at the previous time step (3.28),
a rough error estimate becomes available for en+1

R :

|en+1
R | ≤ 2(∆t

1
2 + h) + C1∆t|τn+1

1 | ≤ 2(∆t
1
2 + h) + CC1∆t2 ≤ 3∆t

1
2 + 2h,(4.23)

provided that C1C2∆t ≤ 1 and CC1(∆t)3/2 < 1, with the local truncation error
estimate |τn+1

1 | ≤ C∆t being used.
The rough error estimate on en+1

R enables us to refine the estimates on qn+1
i . The

bound inequalities (3.39)–(3.42) are still valid, and we are able to obtain

(4.24) 0 < qn+1
c =

1

ξc
≤ max

(

1

cne +Rn+1
e

,
1

cn +Rn+1

)

≤ 4ǫ−1
0 (by (3.39), (3.41)),

provided that ∆t and h are sufficiently small, in which the representation (4.15) has
been applied. Similar estimates can be made for a and b:

0 < qn+1
a =

1

ξa
≤ max

(

1

ane − Rn+1
e

,
1

an − Rn+1

)

≤ 4ǫ−1
0 ,(4.25)

0 < qn+1
b =

1

ξb
≤ max

(

1

bne − Rn+1
e

,
1

bn − Rn+1

)

≤ 4ǫ−1
0 ,(4.26)

so that the following uniform bound is available:

(4.27) 0 < qn+1
a + qn+1

b + qn+1
c ≤ C3 := 12ǫ−1

0 .

As a result, the following refined estimate could be derived:

∣

∣

∣

∣

qn+1
a ena + qn+1

b enb − qn+1
c enc

Mn+1

∣

∣

∣

∣

≤
1

Mn+1 (q
n+1
a + qn+1

b + qn+1
c )max(|ena |, |enb |, |enc |)

≤ C1C3∆tmax(|ena |, |enb |, |enc |).(4.28)

Going back to the earlier error estimate (4.22), we get

|en+1
R | ≤

|qn+1
0 |

Mn+1 |enc | +
∣

∣

∣

∣

qn+1
a ena + qn+1

b enb − qn+1
c enc

Mn+1

∣

∣

∣

∣

+
1

Mn+1 |τn+1
1 |

≤ C1C2∆t|enc | + C1C3∆tmax(|ena |, |enb |, |enc |) + C1∆t|τn+1
1 |

≤ C1(C2 + C3)∆tmax(|ena |, |enb |, |enc |) + C1∆t|τn+1
1 |.(4.29)
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Meanwhile, the intermediate error decomposition formula (3.49) is still valid, so that
the following error estimate could be derived in the reaction stage:

|en+1,∗
a | ≤ |ena | + |en+1

R | ≤ (1 + C̃3∆t)max(|ena |, |enb |, |enc |) + ∆t|τn+1
1 |,(4.30)

|en+1,∗
b | ≤ |enb | + |en+1

R | ≤ (1 + C̃3∆t)max(|ena |, |enb |, |enc |) + ∆t|τn+1
1 |,(4.31)

|en+1,∗
c | ≤ |enc | + |en+1

R | ≤ (1 + C̃3∆t)max(|ena |, |enb |, |enc |) + ∆t|τn+1
1 |,(4.32)

with C̃3 := C1(C2 + C3). This in turn implies that

(4.33)
‖en+1,∗

a ‖∞, ‖en+1,∗
b ‖∞, ‖en+1,∗

c ‖∞

≤ (1 + C̃3∆t)max(‖ena‖∞, ‖enb ‖∞, ‖enc ‖∞) + ∆t‖τn+1
1 ‖∞.

Remark 4.1. The numerical schemes reported in [37] are focused on the reaction
rate determined by the law of mass action, so that the reaction-diffusion system (4.5)
and the numerical algorithm (4.7) (for the reaction stage, in terms of reaction trajec-
tory) have not been covered in the existing reference. Meanwhile, a similar idea of
operator splitting is applicable, and the novel techniques of rough/refined error esti-
mates, as reported in subsection 3.2, could be very effectively extended to analyze the
proposed method (4.7). Although the reaction rates take a more complicated form
than the ones given by the law of mass action, the monotone property of the singular
logarithmic terms still persist, which in turn brings great convenience to ensuring the
pointwise positivity of the coefficient functions qn+1

a , qn+1
b , and qn+1

c and deriving a
rough error estimate (4.23) for en+1

R . Subsequently, this rough error estimate results
in more accurate bounds, (4.24)–(4.26), for the coefficient functions, so that a more
refined error estimate (4.29) becomes a direct consequence. In general, the numerical
discretization approach and novel techniques of rough/refined error estimates reported
in subsection 3.2 could be applied to any reaction-diffusion system with the reaction
trajectory formulated as

Γ(R,Rt) = −
δF̃
δR

,(4.34)

in which F̃(R) is a singular and convex energy potential in terms of R, and Γ(R,Rt)
is a monotone function of Rt. The technical details are left to interested readers.

4.3. Convergence estimate for the full operator splitting scheme (4.7)
and (2.8). The numerical error functions in the diffusion stage satisfy the same
evolutionary equations (3.54)–(3.56) (by subtracting the implicit Euler method (2.8)
from the consistency estimate (4.13)). In turn, an application of discrete maximum
principle gives the same ‖ · ‖∞ estimates (3.57)–(3.59).

A combination of (4.33) and (3.57)–(3.59) gives

max(‖en+1
a ‖∞, ‖en+1

b ‖∞, ‖en+1
c ‖∞) ≤ (1 + C̃3∆t)max(‖ena‖∞, ‖enb ‖∞, ‖enc ‖∞)

+ ∆t(‖τn+1
0 ‖∞ + ‖τn+1

2 ‖∞).(4.35)

Therefore, an application of a discrete Gronwall inequality leads to the desired con-
vergence estimate

(4.36) max(‖en+1
a ‖∞, ‖en+1

b ‖∞, ‖en+1
c ‖∞) ≤ C(∆t+ h2),

based on the truncation error estimates ‖τn+1
0 ‖∞ ≤ C∆t, ‖τn+1

2 ‖∞ ≤ C(∆t + h2).
Subsequently, the a priori assumption in (3.28) is satisfied at the next time step tn+1,
in the same way as in (3.66), provided ∆t and h are sufficiently small. Therefore, an
induction analysis could be applied. This finishes the proof of Theorem 4.2.
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5. Numerical test. In this section, we present a 2D numerical example for
(1.1). The computational domain is taken as Ω = (−1, 1)2, and the initial condition
is set as
(5.1)


















a0(x, y) =
1
2 (− tanh(

√
x2+y2−0.2

0.1 ) + 1) + 0.01;

b0(x, y) =
1
2 (tanh(

√
x2+y2−0.2

0.1 ) + 1) + 0.01;

c0(x, y) =
1
4 tanh(

√
x2+(y−0.2)2−0.2

0.1 + 1) + 1
4 tanh(

√
x2+(y+0.2)2−0.2

0.1 + 1) + 0.01.

The diffusion coefficients are given by Da ≡ 0.05, Db ≡ 1, and Dc ≡ 0.1. The initial
condition and numerical solutions at different time instants are displayed in Figure 5.1.

(a) (b)

(c) (d)

Fig. 5.1. (a)–(d): Numerical results for the reaction-diffusion system (1.1) with Da ≡ 0.05,
Db ≡ 1, Dc ≡ 0.1, and the initial condition (5.1): (a) t = 0, (b) t = 0.2, (c) t = 1, and (d) t = 2.

In addition, we look at the numerical error at T = 0.2, before the system reaches
the constant steady state. Since the analytical solution is not available, we use the
numerical solution with h = 1/200 and ∆t = 1/1600 as the reference solution in
the accuracy test for the temporal numerical errors. Moreover, we fix the spatial
resolution as h = 1

200 for the temporal accuracy test, so that the spatial numerical
error is negligible. Table 5.1 displays the ‖ · ‖∞ numerical errors at T = 0.2 with a
sequence of time step sizes: ∆t = 1

25 ,
1

50 ,
1

100 ,
1

200 , and
1

400 . This result indicates a
clear first-order accuracy in time.

Table 5.1
Numerical errors, order of accuracy for numerical simulations of (1.1) with Da = 0.05, Db = 1,

Dc = 0.1, and initial condition (5.1) at T = 0.2. The numerical solution with h = 1/200 and
∆t = 1/1600 is taken as the reference solution.

∆t h ‖ea‖∞ Order ‖eb‖∞ Order ‖ec‖∞ Order
1/25 1/200 9.5498e-3 1.2498e-2 7.1119e-3
1/50 1/200 4.8519e-3 0.9769 5.8081e-3 1.1056 3.5450e-3 1.0044
1/100 1/200 2.3840e-3 1.0252 2.7387e-3 1.0846 1.7314e-3 1.0338
1/200 1/200 1.1208e-3 1.0889 1.2629e-3 1.1168 8.1173e-4 1.0929
1/400 1/200 4.8213-4 1.2170 5.3817e-4 1.2306 3.4862e-4 1.2193

To test the spatial accuracy of the operator scheme for this example, we perform
the computations on a sequence of mesh resolutions, h = 1

20 ,
1

30 ,
1

40 ,
1

50 ,
1

60 , and the
time step size is set as ∆t = h2 to eliminate the affect of temporal errors. Since an
analytical form of the exact solution is not available, we compute the ℓ∞ differences
between numerical solutions with consecutive spatial resolutions, hj−1, hj , and hj+1,
in the Cauchy convergence test. Since we expect the numerical scheme preserves a
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second-order spatial accuracy, we can compute the quantity

ln
(

1
A∗ ·

‖uhj−1 −uhj ‖∞

‖uhj −uhj+1 ‖∞

)

ln
hj−1
hj

, A∗ =
1 − h2

j
h2

j−1

1 − h2
j+1
h2

j

for hj−1 > hj > hj+1

to check the convergence order [38]. As demonstrated in Table 5.2, an almost perfect
second-order spatial convergence rate for the proposed operator splitting scheme is
observed.

Table 5.2
The ℓ∞ differences and convergence order for the numerical solutions of a, b, and c at T = 0.2.

Various mesh resolutions are used: h1 = 1

20
, h2 = 1

30
, h3 = 1

40
, h4 = 1

50
, h5 = 1

60
; and the time

step size is taken as ∆t = h2.

— ψ = a Order ψ = b Order ψ = c Order
‖ψh1 − ψh2 ‖∞ 2.0358e-3 - 4.1584e-4 - 7.6602e-4 -
‖ψh2 − ψh3 ‖∞ 7.1819e-4 1.9805 1.4459e-4 2.0162 2.6167e-4 2.0599
‖ψh3 − ψh4 ‖∞ 3.3291e-4 1.9949 6.6751e-5 2.0090 1.2073e-4 2.0111
‖ψh3 − ψh4 ‖∞ 1.8086e-4 1.9995 3.6211e-5 2.0060 6.5512e-5 2.0048

6. Concluding remarks. A detailed convergence analysis and error estimate
have been presented for the variational operator splitting scheme for the reaction-
diffusion system (1.1), which satisfies the detailed balance condition. The operator
splitting scheme is based on an energetic variational formulation, in which the equation
of the reaction trajectory R is introduced in the reaction stage, and both the reaction
and diffusion stages dissipate the same discrete free energy [37].

To overcome a well-known difficulty associated with the implicit treatment of the
highly nonlinear and singular logarithmic terms, we make use of the convex nature
of these nonlinear terms. A combination of rough error estimate and refined error
estimate leads to a desired bound of the numerical error at the reaction stage, in the
discrete ‖ · ‖∞ norm. In addition, a discrete maximum principle yields the evolution
bound of the numerical error function at the diffusion stage. As a result, a combination
of the numerical error analysis at different stages and the consistency estimate for the
operator splitting yields the desired convergence estimate for the full reaction-diffusion
system in the discrete ‖ · ‖∞ norm, provided that the exact solutions are sufficiently
smooth, and ∆t and h are sufficiently small. It is straightforward to extend the
analysis to other reaction-diffusion systems with detailed balance [54].
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Mathematics at the Illinois Institute of Technology for their generous support and for
a stimulating environment.
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